DOCK2 contributes to endotoxemia-induced acute lung injury in mice by activating proinflammatory macrophages

DOCK2 通过激活促炎巨噬细胞导致小鼠内毒血症引起的急性肺损伤

阅读:5
作者:Xiaotao Xu, Yang Su, Kaixuan Wu, Fan Pan, Aizhong Wang

Abstract

Dedicator of cytokinesis 2 (DOCK2), an atypical Rac activator, has important anti-inflammatory properties in blepharitis, enteric bacterial infection and colitis. However, the roles of DOCK2 in macrophage activation and acute lung injury (ALI) are still poorly elucidated. In vitro studies demonstrated that DOCK2 was essential for the nucleotide-sensing Toll-like receptor (TLR) 4-mediated inflammatory response in macrophages. We also confirmed that exposure of macrophages to LPS induced Rac activation through a TLR4-independent, DOCK2-dependent mechanism. Phosphorylation of IκB kinase (IKK) β and nuclear translocation of transcription factor nuclear factor kappa B (NF-κB) were impaired in Ad-shDOCK2-expressing macrophages, resulting in a decreased inflammatory response. Similar results were obtained when EHop-016 (a Rac inhibitor) was used to treat uninfected macrophages. In summary, these data indicate that the DOCK2-Rac signaling pathway acts in parallel with TLR4 engagement to control IKKβ activation for inflammatory cytokine release. Next, we investigated whether pharmacological inhibition of DOCK2 protects against endotoxemia-induced lung injury in mice. Treatment with 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP), a small-molecule inhibitor of DOCK2, reduced the severity of lung injury, as indicated by decreases in the lung injury score and myeloperoxidase (MPO) activity. Moreover, CPYPP attenuated LPS-induced proinflammatory cytokine release in mice. Our studies suggest that inhibition of DOCK2 may suppress LPS-induced macrophage activation and that DOCK2 may be a novel target for treating endotoxemia-related ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。