Theobroma cacao improves bone growth by modulating defective ciliogenesis in a mouse model of achondroplasia

可可树通过调节软骨发育不全小鼠模型中缺陷的纤毛生成来促进骨骼生长

阅读:5
作者:Ludovic Martin #, Nabil Kaci #, Catherine Benoist-Lasselin #, Marine Mondoloni, Suzanne Decaudaveine, Valentin Estibals, Maxence Cornille, Léa Loisay, Justine Flipo, Benoît Demuynck, Maria de la Luz Cádiz-Gurrea, Florent Barbault, Salvador Fernández-Arroyo, Laurent Schibler, Antonio Segura-Carretero

Abstract

A gain-of-function mutation in the fibroblast growth factor receptor 3 gene (FGFR3) results in achondroplasia (ACH), the most frequent form of dwarfism. Constitutive activation of FGFR3 impairs bone formation and elongation and many signal transduction pathways. Identification of new and relevant compounds targeting the FGFR3 signaling pathway is of broad importance for the treatment of ACH, and natural plant compounds are prime drug candidate sources. Here, we found that the phenolic compound (-)-epicatechin, isolated from Theobroma cacao, effectively inhibited FGFR3's downstream signaling pathways. Transcriptomic analysis in an Fgfr3 mouse model showed that ciliary mRNA expression was modified and influenced significantly by the Indian hedgehog and PKA pathways. (-)-Epicatechin is able to rescue mRNA expression impairments that control both the structural organization of the primary cilium and ciliogenesis-related genes. In femurs isolated from a mouse model (Fgfr3Y367C/+) of ACH, we showed that (-)-epicatechin eliminated bone growth impairment during 6 days of ex vivo culture. In vivo, we confirmed that daily subcutaneous injections of (-)-epicatechin to Fgfr3Y367C/+ mice increased bone elongation and rescued the primary cilium defects observed in chondrocytes. This modification to the primary cilia promoted the typical columnar arrangement of flat proliferative chondrocytes and thus enhanced bone elongation. The results of the present proof-of-principle study support (-)-epicatechin as a potential drug for the treatment of ACH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。