Astragalus membranaceus and Salvia miltiorrhiza ameliorates cyclosporin A-induced chronic nephrotoxicity through the "gut-kidney axis"

黄芪丹参通过“肠肾轴”改善环孢素A诱发的慢性肾毒性

阅读:4
作者:Cong Han, Yue-Hua Jiang, Wei Li, Yao Liu

Aim of the study

To explore the protective effect of AS by regulating the intestinal flora to further control the miRNA-mRNA interaction profiles in CICN. Materials and

Conclusion

AS could alleviate renal fibrosis and metabolism caused by CICN through the "gut-kidney axis". Probiotics such as Akkermansia and Lactobacillus were the primary driving factors, and the miRNA-mRNA interaction profiles, especially Butanoate metabolism and Tryptophan metabolism, may be an important subsequent response and regulatory mechanism.

Methods

Thirty-two mice were divided into four groups: Normal (N) (olive oil), Model (M) (CsA, 30 mg kg-1 d-1), AS (CsA + AS, 30 + 8.4 g kg-1 d-1) and FMT-AS (CsA + Faeces of AS group, 30 mg + 10 mL kg-1 d-1). The mice were treated for 6 weeks. Changes in renal function related metabolites were detected, pathological changes in the colon and kidney were observed, and 16S rDNA sequencing was performed on mouse faeces. In addition, miRNA and mRNA sequencing were performed on the kidney to construct differential expression (DE) profiles of the other 3 groups compared with group M. The target mRNAs among the DE miRNAs were then predicted, and an integrated analysis was performed with the DE mRNAs to annotate gene function by KEGG. DE miRNAs and DE mRNAs related to CICN in the overlapping top 20 KEGG pathways were screened and verified.

Results

Eight metabolites that could worsen renal function were increased in group M, accompanied by thickening of the glomerular basement membrane, vacuolar degeneration of renal tubules, and proliferation of collagen fibres, while AS and FMT-AS intervention amended these changes to varying degrees. Simultaneously, intestinal permeability increased, the abundance and diversity of the flora decreased, and the ratio of Firmicum to Bacteroides (F/B) increased in group M. The AS and FMT-AS treatments reversed the flora disorder and increased probiotics producing butyric acid and lactic acid, especially Akkermansia and Lactobacillus, which might regulate the 12 overlapping top 20 KEGG pathways, such as Butanoate metabolism, Tryptophan metabolism and several RF-related pathways, leading to the remission of renal metabolism. Finally, 15 DE miRNAs and 45 DE mRNAs were screened as the therapeutic targets, and the results coincided with the sequencing results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。