TP53-induced glycolysis and apoptosis regulator (TIGAR) ameliorates lysosomal damage in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-mediated mouse model of Parkinson's disease

TP53 诱导的糖酵解和凋亡调节剂 (TIGAR) 可改善 1-甲基-4-苯基-1,2,3,6-四氢吡啶介导的帕金森病小鼠模型中的溶酶体损伤

阅读:6
作者:Jianbin Ge, Hongyan Lin, Jie Yang, QiQi Li, Jingsi Zhou, Zhenghong Qin, Feng Wu

Abstract

The progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) correlates with rupture of lysosome in Parkinson's disease (PD). It has been found that TP53-induced glycolysis and apoptosis regulator (TIGAR) has been attributed to the regulation of metabolic pathways and neuroprotective effect. In the present study, we showed in a mouse model that 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) caused lysosomal damage and DA neurons loss in the SNpc. MPTP only induced SP1-mediated TIGAR upregulation in the early stage of neurotoxin-induced pathology, and this compensatory mechanism was not enough to maintain normal lysosomal function. MPTP significantly decreased the levels of NADPH and GSH, and the effects were ameliorated by the expression of exogenous TIGAR but execerbated by knockdown of TIAGR. TIGAR or NADPH alleviated oxidative stress, rescued lysosomal dysfunction and attenuated DA neurons degeneration. Overexpression of TIGAR or NADPH supplement inhibited MPP+-mediated reactive oxygen species (ROS), lysosomal membrane permeabilization (LMP) and autophagic flux impairment in PC12 cells. Together, these findings suggest that TIGAR reduces MPTP-mediated oxidative stress, lysosomal depletion and DA neuron damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。