Retinoic acid inducible gene-I slows down cellular senescence through negatively regulating the integrin β3/p38 MAPK pathway

视黄酸诱导基因-I通过负向调控整合素β3/p38 MAPK通路延缓细胞衰老

阅读:6
作者:Junmei Zhao, Xinyi Jiang, Li Yan, Jian Lin, Hezhou Guo, Shanhe Yu, Baixin Ye, Jiang Zhu, Wu Zhang

Abstract

Retinoic acid inducible gene-I (Rig-I) has been well documented as a cytosolic pattern recognition receptor that can sense viral RNA ligands to initiate the interferon-mediated antiviral immunity. However, little is known about the biological behaviors of Rig-I devoid of viral infection. Herein, we investigated the roles of Rig-I in the regulation of cellular senescence. In comparison to wild-type counterparts, Rig-I-/- mice displayed the accelerated loss of hair, less responsiveness to gentle physical stimuli and shorten survival time. Likewise, Rig-I deficiency rendered mouse embryonic fibroblasts (MEFs) more susceptible to the serial passages-associated replicative senescence. By performing a transcriptome analysis, we identified integrins at the intersections of biological pathways affected by Rig-I. Among these, integrin β3 was negatively regulated by Rig-I, and significantly upregulated with the occurrence of senescence. Gene silencing of Itgb3 (encoding integrin β3) retarded the progression of cellular senescence in both WT and Rig-I-/- MEFs. Notably, this effect was more prominent in Rig-I-/- MEFs. Furthermore, p38 MAPK was a key downstream molecule for integrin β3-mediated senescence, and overactivated in senescent Rig-I-/- MEFs. Taken together, Rig-I deficiency contributes to cellular senescence through amplifying integrin β3/p38 MAPK signaling. Our findings provide the evidence that Rig-I is a key regulator of cellular senescence, which will be helpful in better understanding its function without viral infection.Abbreviations: Rig-I: retinoic acid inducible gene-I; SASP: senescence-associated secretory phenotype; ECM: extracellular matrix; Itgb3: integrin beta 3; PRR: pattern recognition receptor; MEFs: mouse embryonic fibroblasts; Il-1β: interleukin-1 beta; Il-6: interleukin-6; Il-8: interleukin-8; Cxcl1: chemokine (C-X-C motif) ligand 1; Ccl2: chemokine (C-C motif) ligand 2; WT, wild type; BM: bone marrow; MAPK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinases; JNK: Jun N-terminal kinases; SA-β-gal: senescence-associated β-galactosidase; qPCR: quantitative reverse-transcription PCR; PBS: phosphate-buffered saline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。