Identification of Natural Product Sulfuretin Derivatives as Inhibitors for the Endoplasmic Reticulum Redox Protein ERO1α

天然产物硫脲衍生物作为内质网氧化还原蛋白ERO1α抑制剂的鉴定

阅读:7
作者:Brennan D Johnson, Sridhar Kaulagari, Wei-Chih Chen, Karen Hayes, Werner J Geldenhuys, Lori A Hazlehurst

Abstract

The flavin adenine dinucleotide containing Endoplasmic Reticulum Oxidoreductase-1 α (ERO1α) catalyzes the formation of de novo disulfide bond formation of secretory and transmembrane proteins and contributes towards proper protein folding. Recently, increased ERO1α expression has been shown to contribute to increased tumor growth and metastasis in multiple cancer types. In this report we sought to define novel chemical space for targeting ERO1α function. Using the previously reported ERO1α inhibitor compound, EN-460, as a benchmark pharmacological tool we were able to identify a sulfuretin derivative, T151742 which was approximately two-fold more potent using a recombinant enzyme assay system (IC50 = 8.27 ± 2.33 μM) compared to EN-460 (IC50= 16.46 ± 3.47 μM). Additionally, T151742 (IC50 = 16.04 μM) was slightly more sensitive than EN-460 (IC50= 19.35μM) using an MTT assay as an endpoint. Utilizing a cellular thermal shift assay (CETSA), we determined that the sulfuretin derivative T151742 demonstrated isozyme specificity for ERO1α as compared to ERO1β and showed no detectable binding to the FAD containing enzyme LSD-1. T151742 retained activity in PC-9 cells in a clonogenicity assay while EN-460 was devoid of activity. Furthermore, the activity of T151742 inhibition of clonogenicity was dependent on ERO1α expression as CRISPR edited PC-9 cells were resistant to treatment with T151742. In summary we identified a new scaffold that shows specificity for ERO1α compared to the closely related paralog ERO1β or the FAD containing enzyme LSD-1 that can be used as a tool compound for inhibition of ERO1α to allow for pharmacological validation of the role of ERO1α in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。