Ketamine and its metabolite 2R,6R-hydroxynorketamine promote ocular dominance plasticity and release tropomyosin-related kinase B from inhibitory control without reducing perineuronal nets enwrapping parvalbumin interneurons

氯胺酮及其代谢物 2R,6R-羟基去甲氯胺酮促进眼优势可塑性,并从抑制控制中释放原肌球蛋白相关激酶 B,而不会减少包裹小白蛋白中间神经元的周围神经元网络

阅读:11
作者:Cecilia Cannarozzo, Anna Rubiolo, Plinio Casarotto, Eero Castrén

Abstract

Ketamine has been described as a fast-acting antidepressant, exerting effects in depressed patients and in preclinical models with a rapid onset of action. The typical antidepressant fluoxetine is known to induce plasticity in the adult rodent visual cortex, as assessed by a shift in ocular dominance, a classical model of brain plasticity, and a similar effect has been described for ketamine and its metabolite 2R,6R-hydroxynorketamine (R,R-HNK). Here, we demonstrate that ketamine (at 3 or 20 mg/kg) and R,R-HNK facilitated the shift in ocular dominance in monocularly deprived mice, after three injections, throughout the 7-day monocular deprivation regimen. Notably, the comparison between the treatments indicates a higher effect size of R,R-HNK compared with ketamine. Treatment with ketamine or R,R-HNK failed to influence the levels of perineuronal nets (PNNs) surrounding parvalbumin-positive interneurons. However, we observed in vitro that both ketamine and R,R-HNK are able to disrupt the tropomyosin-related kinase B (TRKB) interaction with the protein tyrosine phosphatase sigma (PTPσ), which upon binding to PNNs dephosphorylates TRKB. These results support a model where diverse drugs promote the reinstatement of juvenile-like plasticity by directly binding TRKB and releasing it from PTPσ regulation, without necessarily reducing PNNs deposits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。