Aim of the study
This study aimed to investigate the effects of methoxyeugenol treatment on HSC phenotype modulation in human and murine cells, hepatocyte damage prevention, and protective effects in vivo, in order to evaluate its therapeutic potential for liver fibrosis prevention.
Conclusion
We propose methoxyeugenol as a novel and potential therapeutic approach to treat chronic liver disease and fibrosis.
Methods
We investigated the effects of methoxyeugenol in (i) in vitro models using human and murine HSC and hepatocytes, and (ii) in vivo models of CCl4 (carbon tetrachloride) -induced liver fibrosis in mice.
Results
We herein report that methoxyeugenol decreases HSC activation through the activation of PPAR-ɣ, ultimately inducing a quiescent phenotype highlighted by an increase in lipid droplets, loss of contraction ability, and a decrease in the proliferative rate and mRNA expression of fibroblast markers. In addition, methoxyeugenol prevented hepatocytes from oxidative stress damage. Moreover, in mice submitted to chronic liver disease through CCl4 administration, methoxyeugenol decreased the inflammatory profile, liver fibrosis, mRNA expression of fibrotic genes, and the inflammatory pathway signaled by NF-kB (Nuclear factor kappa B).
