L-type voltage-gated calcium channel agonists mitigate hearing loss and modify ribbon synapse morphology in the zebrafish model of Usher syndrome type 1

L 型电压门控钙通道激动剂可减轻 Usher 综合征 1 型斑马鱼模型中的听力损失并改变带状突触形态

阅读:5
作者:Alaa Koleilat, Joseph A Dugdale, Trace A Christenson, Jeffrey L Bellah, Aaron M Lambert, Mark A Masino, Stephen C Ekker, Lisa A Schimmenti

Abstract

The mariner (myo7aa-/- ) mutant is a zebrafish model for Usher syndrome type 1 (USH1). To further characterize hair cell synaptic elements in myo7aa-/- mutants, we focused on the ribbon synapse and evaluated ultrastructure, number and distribution of immunolabeled ribbons, and postsynaptic densities. By transmission electron microscopy, we determined that myo7aa-/- zebrafish have fewer glutamatergic vesicles tethered to ribbon synapses, yet maintain a comparable ribbon area. In myo7aa-/- hair cells, immunolocalization of Ctbp2 showed fewer ribbon-containing cells in total and an altered distribution of Ctbp2 puncta compared to wild-type hair cells. myo7aa-/- mutants have fewer postsynaptic densities - as assessed by MAGUK immunolabeling - compared to wild-type zebrafish. We quantified the circular swimming behavior of myo7aa-/- mutant fish and measured a greater turning angle (absolute smooth orientation). It has previously been shown that L-type voltage-gated calcium channels are necessary for ribbon localization and occurrence of postsynaptic density; thus, we hypothesized and observed that L-type voltage-gated calcium channel agonists change behavioral and synaptic phenotypes in myo7aa-/- mutants in a drug-specific manner. Our results indicate that treatment with L-type voltage-gated calcium channel agonists alter hair cell synaptic elements and improve behavioral phenotypes of myo7aa-/- mutants. Our data support that L-type voltage-gated calcium channel agonists induce morphological changes at the ribbon synapse - in both the number of tethered vesicles and regarding the distribution of Ctbp2 puncta - shift swimming behavior and improve acoustic startle response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。