Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells

Piezo1 通道激活通过增强血管内皮细胞的线粒体呼吸和糖酵解来刺激 ATP 的产生

阅读:5
作者:Man Jiang, Yi-Xin Zhang, Wen-Jie Bu, Ping Li, Jia-Hui Chen, Ming Cao, Yan-Chao Dong, Zhi-Jie Sun, De-Li Dong

Background and purpose

Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear. Experimental approach: The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM. Key

Purpose

Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear. Experimental approach: The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM. Key

Results

The specific Piezo1 channel activator Yoda1 or its analogue Dooku1 increased [Ca2+ ]i in human umbilical vein endothelial cells (HUVECs), and both Yoda1 and Dooku1 increased mitochondrial oxygen consumption rates (OCRs) and mitochondrial ATP production in HUVECs and primary cultured rat aortic endothelial cells (RAECs). Knockdown of Piezo1 inhibited Yoda1- and Dooku1-induced increases of mitochondrial OCRs and mitochondrial ATP production in HUVECs. The shear stress mimetics, Yoda1 and Dooku1, and the Piezo1 knock-down technique also demonstrated that Piezo1 activation increased glycolysis in HUVECs. Chelating extracellular Ca2+ with EGTA or chelating cytosolic Ca2+ with BAPTA-AM did not affect Yoda1- and Dooku1-induced increases of mitochondrial OCRs and ATP production, but chelating cytosolic Ca2+ inhibited Yoda1- and Dooku1-induced increase of glycolysis. Confocal microscopy showed that Piezo1 channels are present in mitochondria of endothelial cells, and Yoda1 and Dooku1 increased mitochondrial Ca2+ in endothelial cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。