Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora

海洋杆菌属的鼠李糖脂生物合成将生物表面活性剂合成范式扩展至海洋微生物群落的新属

阅读:6
作者:Lakshmi Tripathi, Matthew S Twigg, Aikaterini Zompra, Karina Salek, Victor U Irorere, Tony Gutierrez, Georgios A Spyroulias, Roger Marchant, Ibrahim M Banat

Background

In comparison to synthetically derived surfactants, biosurfactants produced from microbial culture are generally regarded by industry as being more sustainable and possess lower toxicity. One major class of biosurfactants are rhamnolipids primarily produced by Pseudomonas aeruginosa. Due to its pathogenicity rhamnolipid synthesis by this species is viewed as being commercially nonviable, as such there is a significant focus to identify alternative producers of rhamnolipids.

Conclusions

This study expands the paradigm of rhamnolipid biosynthesis to a new genus of bacterium from the marine environment. Rhamnolipids produced from Marinobacter have prospects for industrial application due to their potential to be synthesised from cheap, renewable feed stocks and significantly reduced pathogenicity compared to P. aeruginosa strains.

Results

To achieve this, we phenotypically screened marine bacteria for biosurfactant production resulting in the identification of rhamnolipid biosynthesis in a species belonging to the Marinobacter genus. Preliminary screening showed the strain to reduce surface tension of cell-free supernatant to 31.0 mN m-1. A full-factorial design was carried out to assess the effects of pH and sea salt concentration for optimising biosurfactant production. When cultured in optimised media Marinobacter sp. MCTG107b produced 740 ± 28.3 mg L-1 of biosurfactant after 96 h of growth. Characterisation of this biosurfactant using both HPLC-MS and tandem MS showed it to be a mixture of different rhamnolipids, with di-rhamnolipid, Rha-Rha-C10-C10 being the most predominant congener. The strain exhibited no pathogenicity when tested using the Galleria mellonella infection model. Conclusions: This study expands the paradigm of rhamnolipid biosynthesis to a new genus of bacterium from the marine environment. Rhamnolipids produced from Marinobacter have prospects for industrial application due to their potential to be synthesised from cheap, renewable feed stocks and significantly reduced pathogenicity compared to P. aeruginosa strains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。