Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion

中脑星形胶质细胞衍生的神经营养因子可保护心脏免受缺血性损伤,并在肌网/内质网钙耗竭时选择性分泌

阅读:7
作者:Christopher C Glembotski, Donna J Thuerauf, Chengqun Huang, John A Vekich, Roberta A Gottlieb, Shirin Doroudgar

Abstract

The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is secreted are not known. Accordingly, we examined the mechanism of MANF release from cultured ventricular myocytes and HeLa cells, both of which secrete proteins via the constitutive pathway. Although the secretion of proteins via the constitutive pathway is not known to increase upon changes in intracellular calcium, MANF secretion was increased within 30 min of treating cells with compounds that deplete sarcoplasmic reticulum (SR)/ER calcium. In contrast, secretion of atrial natriuretic factor from ventricular myocytes was not increased by SR/ER calcium depletion, suggesting that not all secreted proteins exhibit the same characteristics as MANF. We postulated that SR/ER calcium depletion triggered MANF secretion by decreasing its retention. Consistent with this were co-immunoprecipitation and live cell, zero distance, photo affinity cross-linking, demonstrating that, in part, MANF was retained in the SR/ER via its calcium-dependent interaction with the SR/ER-resident protein, GRP78 (glucose-regulated protein 78 kDa). This unusual mechanism of regulating secretion from the constitutive secretory pathway provides a potentially missing link in the mechanism by which extracellular MANF protects cells from stresses that deplete SR/ER calcium. Consistent with this was our finding that administration of recombinant MANF to mice decreased tissue damage in an in vivo model of myocardial infarction, a condition during which ER calcium is known to be dysregulated, and MANF expression is induced.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。