Coordinately Targeting Cell-Cycle Checkpoint Functions in Integrated Models of Pancreatic Cancer

在胰腺癌综合模型中协同靶向细胞周期检查点功能

阅读:7
作者:Sejin Chung, Paris Vail, Agnieszka K Witkiewicz, Erik S Knudsen

Conclusions

These results demonstrate the therapeutic resiliency of pancreatic cancer and indicate that coordinately targeting cell-cycle checkpoints in concert with chemotherapy could be particularly efficacious.

Purpose

Cancer cells often have deficiencies in cell-cycle control mechanisms and could be dependent on specific cell-cycle checkpoints to maintain viability. Because of the documented role of KRAS in driving replication stress, we targeted the checkpoint governing DNA replication using CHK1 kinase inhibitors in pancreatic ductal adenocarcinoma (PDAC) models and examined mechanisms of resistance. Experimental design: Single-agent efficacy of CHK1 inhibition was investigated in established and primary PDAC lines. Drug screening was performed to identify cooperative agents. In vitro and in vivo studies were employed to interrogate combination treatment efficacy and mechanisms of resistance.

Results

Many PDAC models evade single-agent inhibition through mechanisms that allow S-phase progression with CHK1 inhibited. Gene expression analysis revealed FOXM1 as a potential marker of CHK1 sensitivity and defined a form of pancreatic cancer with poor prognosis. Drug screen analysis identified WEE1 as a cooperative agent with CHK1 and was effective in cell culture. In vivo experiments validated the combination efficacy; however, resistance could evolve. Resistance was due to selection of a stable subclone from the original PDX tumor, which harbored high baseline replication stress. In vitro analysis revealed that gemcitabine could eliminate viability in the resistant models. The triplet regimen of gemcitabine, CHK1, and WEE1 inhibition provided strong disease control in all xenograft models interrogated. Conclusions: These results demonstrate the therapeutic resiliency of pancreatic cancer and indicate that coordinately targeting cell-cycle checkpoints in concert with chemotherapy could be particularly efficacious.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。