MiRNA-21 mediates the antiangiogenic activity of metformin through targeting PTEN and SMAD7 expression and PI3K/AKT pathway

MiRNA-21 通过靶向 PTEN 和 SMAD7 表达以及 PI3K/AKT 通路介导二甲双胍的抗血管生成活性

阅读:7
作者:Mao Luo, Xiaoyong Tan, Lin Mu, Yulin Luo, Rong Li, Xin Deng, Ni Chen, Meiping Ren, Yongjie Li, Liqun Wang, Jianbo Wu, Qin Wan

Abstract

Metformin, an anti-diabetic drug commonly used for type 2 diabetes therapy, is associated with anti-angiogenic effects in conditions beyond diabetes. miR-21 has been reported to be involved in the process of angiogenesis. However, the precise regulatory mechanisms by which the metformin-induced endothelial suppression and its effects on miR-21-dependent pathways are still unclear. Bioinformatic analysis and identification of miR-21 and its targets and their effects on metformin-induced antiangiogenic activity were assessed using luciferase assays, quantitative real-time PCR, western blots, scratch assays, CCK-8 assays and tubule formation assays. In this study, miR-21 was strikingly downregulated by metformin in a time- and dose-dependent manner. miR-21 directly targeted the 3'-UTR of PTEN and SMAD7, and negatively regulated their expression. Overexpression of miR-21 abrogated the metformin-mediated inhibition of endothelial cells proliferation, migration, tubule formation and the TGF-β-induced AKT, SMAD- and ERK-dependent phosphorylations, and conversely, down-regulation of miR-21 aggravated metformin's action and revealed significant promotion effects. Our study broadens our understanding of the regulatory mechanism of miR-21 mediating metformin-induced anti-angiogenic effects, providing important implications regarding the design of novel miRNA-based therapeutic strategies against angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。