Overexpression of miR-148a-3p inhibits extracellular matrix degradation and alleviates IL-1β-induced intervertebral disc degeneration

miR-148a-3p过表达抑制细胞外基质降解减轻IL-1β诱导的椎间盘退变

阅读:6
作者:Hehuan Lai, Jialin Fan, Yejin Zhang, Bin Pan, Wenzheng Pan, Jiawei Fang, Kainan Ni, Zhenzhong Chen, Shijie Liu, Chao Lou, Dengwei He

Conclusion

We proved that miR-148a-3p can attenuate ECM loss and protect NP function by inhibiting matrix-degrading enzymes.

Methods

This study used microRNA microarrays to analyze key regulators of IDD. Q-PCR was used to verify the IL-1β-induced down-regulation of miR-148a-3p expression both in nucleus pulposus (NP) tissues of IDD patients and in degenerated NP cells (NPCs) of rats. Rat NPC micromass cultures and ex vivo intervertebral disc (IVD) culture models were established, and histological staining was performed to verify the effect of miR-148a-3p on the general morphology and proteoglycan and collagen contents of IVDs. In addition, q-PCR and western blotting analyses were performed to examine the expression of ECM molecules and matrix-degrading enzymes. A luciferase reporter assay was used to confirm the target genes of miR-148a-3p.

Results

Our data revealed that miR-148a-3p was down-regulated in IDD. Overexpression of miR-148a-3p had no effect on ACAN or COL2A1 gene expression but decreased MMP3, MMP13, and ADAMTS5 gene expression. The matrix deposited by miR-148a-3p-overexpressing rat NPCs contained high levels of proteoglycans and collagen. The ex vivo experiments verified that agomiR-148a-3p alleviated the NPC matrix degradation induced by IL-1β. A luciferase reporter assay confirmed that miR-148a-3p directly targeted ADAMTS5 and MMP13.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。