Inhibition of TERC inhibits neural apoptosis and inflammation in spinal cord injury through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis

TERC 抑制可通过 miR-34a-5p/XBP-1 轴激活 Akt 和抑制 p-38 来抑制脊髓损伤中的神经细胞凋亡和炎症

阅读:5
作者:Weiguo Ding, Weixing Xu, Di Lu, Hongfeng Sheng, Xinwei Xu, Bin Xu, Aote Zheng

Abstract

This study investigated the function of telomerase RNA component (TERC) in spinal cord injury (SCI). SCI models were established in rats via laminectomy and PC-12 cells were treated with lipopolysaccharide (LPS). TERC and miR-34a-5p expressions in cells and rat spinal cords were detected by quantitative reverse transcription polymerase chain reaction, followed by overexpression/knockdown of TERC/miR-34a-5p. Spinal cord histopathological changes were examined via hematoxylin-eosin staining. miR-34a-5p' relation with TERC and XBP-1 was predicted by TargetScan and checked by dual-luciferase reporter/RNA immunoprecipitation assays. Cell biological behaviors were assessed by Cell counting kit-8, wound healing, Transwell, and flow cytometry assays. XBP-1 and inflammation/apoptosis-related protein expressions were analyzed by western blot. TERC was upregulated and miR-34a-5p was low-expressed in SCI tissues and LPS-induced PC-12 cells. TERC-knockdown alleviated histopathological abnormalities yet upregulated miR-34a-5p in SCI tissues. In LPS-induced PC-12 cells, TERC knockdown promoted cell viability, migration, invasion, and inhibited apoptosis, while TERC overexpression ran oppositely. TERC knockdown downregulated the XBP-1, IL-6, TNF-α, Bax, p-p38/t-p38, and cleaved caspase-9/-3, but upregulated Bcl-2 and p-Akt/t-Akt. TERC targeted miR-34a-5p, which further targeted XBP-1. miR-34a-5p downregulation exerted effects opposite to and offset TERC knockdown-induced effects. TERC knockdown facilitated the regeneration of neuron tissues yet inhibited inflammation in SCI through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。