Immunofluorescence microscopy to assess enzymes controlling nitric oxide availability and microvascular blood flow in muscle

免疫荧光显微镜评估控制肌肉中一氧化氮利用率和微血管血流的酶

阅读:5
作者:Matthew Cocks, Sam O Shepherd, Christopher S Shaw, Juul Achten, Matthew L Costa, Anton J M Wagenmakers

Conclusions

These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.

Methods

Human muscle cryosections were stained using antibodies targeting eNOS, p-eNOS ser(1177) and NOX2 in combination with markers of the endothelium and the sarcolemma. Quantitation was achieved by analyzing fluorescence intensity within the area stained positive for the microvascular endothelium. Analysis was performed in duplicate and repeated five times to investigate CV. In addition, eight healthy males (age 21 ± 1 year, BMI 24.4 ± 1.0 kg/m(2)) completed one hour of cycling exercise at ~65%VO(2max) . Muscle biopsies were taken from the m. vastus lateralis before and immediately after exercise and analyzed using the new methods.

Objective

The net production of NO by the muscle microvascular endothelium is a key regulator of muscle microvascular blood flow. Here, we describe the development of a method to quantify the protein content and phosphorylation of endothelial NO synthase (eNOS content and eNOS ser(1177) phosphorylation) and NAD(P)H oxidase expression.

Results

The CV of all methods was between 6.5 and 9.5%. Acute exercise increased eNOS serine(1177) phosphorylation (fold change 1.29 ± 0.05, p < 0.05). Conclusions: These novel methodologies will allow direct investigations of the molecular mechanisms underpinning the microvascular responses to insulin and exercise, the impairments that occur in sedentary, obese and elderly individuals and the effect of lifestyle interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。