A neuroimaging measure to capture heterogeneous patterns of atrophy in Parkinson's disease and dementia with Lewy bodies

一种用于捕捉帕金森病和路易体痴呆症中异质性萎缩模式的神经影像学测量方法

阅读:15
作者:R Bhome, S Verdi, S A Martin, N Hannaway, I Dobreva, N P Oxtoby, G Castro Leal, S Rutherford, A F Marquand, R S Weil, J H Cole

Conclusions

Neuroanatomical normative modelling shows promise as a clinically informative technique in PD and DLB, where patterns of atrophy are variable.

Methods

We included 108 participants with PD and 61 with DLB. PD participants were subclassified into high and low visual performers as this has previously been shown to stratify those at increased dementia risk. We generated z-scores from T1w-MRI scans for each participant relative to normative regional cortical thickness and subcortical volumes, modelled in a reference cohort (n = 58,836). Outliers (z < -1.96) were aggregated across 169 brain regions per participant. To measure dissimilarity, individuals' Hamming distance scores were calculated. We also examined total outlier counts between high versus low visual performance in PD; and PD versus DLB; and tested associations between these and cognition.

Results

There was significantly greater inter-individual dissimilarity in brain-outlier patterns in PD poor compared to high visual performers (W = 522.5; p < 0.01) and in DLB compared to PD (W = 5649; p < 0.01). PD poor visual performers had significantly greater total outlier counts compared to high (β = -4.73 (SE = 1.30); t = -3.64; p < 0.01) whereas a conventional group-level GLM failed to identify differences. Higher total outlier counts were associated with poorer MoCA (β = -0.55 (SE = 0.27), t = -2.04, p = 0.05) and composite cognitive scores (β = -2.01 (SE = 0.79); t = -2.54; p = 0.02) in DLB, and visuoperception (β = -0.67 (SE = 0.19); t = -3.59; p < 0.01), in PD. Conclusions: Neuroanatomical normative modelling shows promise as a clinically informative technique in PD and DLB, where patterns of atrophy are variable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。