Conclusions
Neuroanatomical normative modelling shows promise as a clinically informative technique in PD and DLB, where patterns of atrophy are variable.
Methods
We included 108 participants with PD and 61 with DLB. PD participants were subclassified into high and low visual performers as this has previously been shown to stratify those at increased dementia risk. We generated z-scores from T1w-MRI scans for each participant relative to normative regional cortical thickness and subcortical volumes, modelled in a reference cohort (n = 58,836). Outliers (z < -1.96) were aggregated across 169 brain regions per participant. To measure dissimilarity, individuals' Hamming distance scores were calculated. We also examined total outlier counts between high versus low visual performance in PD; and PD versus DLB; and tested associations between these and cognition.
Results
There was significantly greater inter-individual dissimilarity in brain-outlier patterns in PD poor compared to high visual performers (W = 522.5; p < 0.01) and in DLB compared to PD (W = 5649; p < 0.01). PD poor visual performers had significantly greater total outlier counts compared to high (β = -4.73 (SE = 1.30); t = -3.64; p < 0.01) whereas a conventional group-level GLM failed to identify differences. Higher total outlier counts were associated with poorer MoCA (β = -0.55 (SE = 0.27), t = -2.04, p = 0.05) and composite cognitive scores (β = -2.01 (SE = 0.79); t = -2.54; p = 0.02) in DLB, and visuoperception (β = -0.67 (SE = 0.19); t = -3.59; p < 0.01), in PD. Conclusions: Neuroanatomical normative modelling shows promise as a clinically informative technique in PD and DLB, where patterns of atrophy are variable.
