Conclusions
Exercise-induced increases in peripheral AEA and BDNF appear to play a role in enhancing consolidation of fear extinction learning, thereby leading to reduced threat expectancies following reinstatement among women with PTSD. Future mechanistic research examining these and other biomarkers (e.g., brain-based biomarkers) is warranted.
Methods
Participants (N = 35) completed a 3-day fear acquisition (day 1), extinction (day 2), and extinction recall (day 3) protocol, in which participants were randomly assigned to complete either moderate-intensity aerobic exercise (EX) or a light-intensity control (CON) condition following extinction training (day 2). Blood was obtained prior to and following EX or CON. Threat expectancy ratings during tests of extinction recall (i.e., initial fear recall and fear recall following reinstatement) were obtained 24 h following EX or CON. Mediation was tested using linear-mixed effects models and bootstrapping of the indirect effect.
Results
Circulating concentrations of AEA and BDNF (but not 2-AG and HVA) were found to mediate the relationship between moderate-intensity aerobic exercise and reduced threat expectancy ratings following reinstatement (AEA 95% CI: -0.623 to -0.005; BDNF 95% CI: -0.941 to -0.005). Conclusions: Exercise-induced increases in peripheral AEA and BDNF appear to play a role in enhancing consolidation of fear extinction learning, thereby leading to reduced threat expectancies following reinstatement among women with PTSD. Future mechanistic research examining these and other biomarkers (e.g., brain-based biomarkers) is warranted.
