A modified HLA-A*0201-restricted CTL epitope from human oncoprotein (hPEBP4) induces more efficient antitumor responses

来自人类癌蛋白 (hPEBP4) 的改良 HLA-A*0201 限制性 CTL 表位可诱导更有效的抗肿瘤反应

阅读:5
作者:Weihong Sun, Junyi Shi, Jian Wu, Junchu Zhang, Huabiao Chen, Yuanyuan Li, Shuxun Liu, Yanfeng Wu, Zhigang Tian, Xuetao Cao, Nan Li

Abstract

We previously identified human phosphatidylethanolamine-binding protein 4 (hPEBP4) as an antiapoptotic protein with increased expression levels in breast, ovarian and prostate cancer cells, but low expression levels in normal tissues, which makes hPEBP4 an attractive target for immunotherapy. Here, we developed hPEBP4-derived immunogenic peptides for inducing antigen-specific cytotoxic T lymphocytes (CTLs) targeting breast cancer. A panel of hPEBP4-derived peptides predicted by peptide-MHC-binding algorithms was evaluated to characterize their HLA-A2.1 affinity and immunogenicity. We identified a novel immunogenic peptide, P40-48 (TLFCQGLEV), that was capable of eliciting specific CTL responses in HLA-A2.1/Kb transgenic mice, as well as in peripheral blood lymphocytes from breast cancer patients. Furthermore, amino-acid substitutions in the P40-48 sequence improved its immunogenicity against hPEBP4, a self-antigen, thus circumventing tolerance. We designed peptide analogs by preferred auxiliary HLA-A*0201 anchor residue replacement, which induced CTLs that were crossreactive to the native peptide. Several analogs were able to stably bind to HLA-A*0201 and elicit specific CTL responses better than the native sequence. Importantly, adoptive transfer of CTLs induced by vaccination with two analogs more effectively inhibited tumor growth than the native peptide. These data indicate that peptide analogs with high immunogenicity represent promising candidates for peptide-mediated therapeutic cancer vaccines.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。