Alkaline pH Promotes NADPH Oxidase-Independent Neutrophil Extracellular Trap Formation: A Matter of Mitochondrial Reactive Oxygen Species Generation and Citrullination and Cleavage of Histone

碱性 pH 促进 NADPH 氧化酶独立的中性粒细胞胞外陷阱形成:线粒体活性氧生成和组蛋白瓜氨酸化和裂解的问题

阅读:4
作者:Cristiane Naffah de Souza, Leandro C D Breda, Meraj A Khan, Sandro Rogério de Almeida, Niels Olsen Saraiva Câmara, Neil Sweezey, Nades Palaniyar

Abstract

pH is highly variable in different tissues and affects many enzymatic reactions in neutrophils. In response to calcium ionophores such as A23187 and ionomycin, neutrophils undergo nicotinamide adenine dinucleotide phosphate oxidase (NOX)-independent neutrophil extracellular trap (NET) formation (NETosis). However, how pH influences calcium-dependent Nox-independent NET formation is not well understood. We hypothesized that increasing pH promotes Nox-independent NET formation by promoting calcium influx, mitochondrial reactive oxygen species (mROS) generation, histone citrullination, and histone cleavage. Here, we show that stimulating human neutrophils isolated from peripheral blood with calcium ionophore A23187 or ionomycin in the media with increasing extracellular pH (6.6, 6.8, 7.0, 7.2, 7.4, 7.8) drastically increases intracellular pH within in 10-20 min. These intracellular pH values are much higher compared to unstimulated cells placed in the media with corresponding pH values. Raising pH slightly drastically increases intracellular calcium concentration in resting and stimulated neutrophils, respectively. Like calcium, mROS generation also increases with increasing pH. An mROS scavenger, MitoTempo, significantly suppresses calcium ionophore-mediated NET formation with a greater effect at higher pH, indicating that mROS production is at least partly responsible for pH-dependent suppression of Nox-independent NETosis. In addition, raising pH increases PAD4 activity as determined by the citrullination of histone (CitH3) and histone cleavage determined by Western blots. The pH-dependent histone cleavage is reproducibly very high during ionomycin-induced NETosis compared to A23187-induced NETosis. Little or no histone cleavage was noted in unstimulated cells, at any pH. Both CitH3 and cleavage of histones facilitate DNA decondensation. Therefore, alkaline pH promotes intracellular calcium influx, mROS generation, PAD4-mediated CitH3 formation, histone 4 cleavage and eventually NET formation. Calcium-mediated NET formation and CitH3 formation are often related to sterile inflammation. Hence, understanding these important mechanistic steps helps to explain how pH regulates NOX-independent NET formation, and modifying pH may help to regulate NET formation during sterile inflammation or potential damage caused by compounds such as ionomycin, secreted by Streptomyces, a group of Gram-positive bacteria well known for producing antibiotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。