Identification of a cisplatin resistant-based prognostic immune related gene signature in MIBC

鉴定 MIBC 中基于顺铂耐药性的预后免疫相关基因特征

阅读:5
作者:Yunfei Wu, Zhijie Xu, Guanghou Fu, Xiaoyi Chen, Junjie Tian, Hairong Cai, Peng Jiang, Baiye Jin

Abstract

Cisplatin resistance plays a significant role in the dismal prognosis and progression of muscle-invasive bladder cancer (MIBC). However, the strategies to predict prognosis and cisplatin resistance are inefficient, and it remains unclear whether cisplatin resistance is associated with tumor immunity. In this study, we integrated the transcriptional data from cisplatin-resistant cell lines and a TCGA-MIBC cohort to establish cisplatin-resistance-related cluster classification and a cisplatin-resistance-related gene risk score (CRRGRS). Kaplan-Meier survival curves showed that compared with those in low CRRGRS group, MIBC patients belonging to high CRRGRS group had worse prognosis in TCGA-MIBC cohort and external GEO cohorts. Meanwhile, CRRGRS was able to help forecast chemotherapy and immunotherapy response of MIBC patients in the TGCA cohort and IMvigor210 cohort. Moreover, compared with the low CRRGRS group, the high CRRGS group possessed a relatively immunosuppressive "cold tumor" phenotype with a higher tumor immune dysfunction and exclusion (TIDE) score, ESTIMATE score, stromal score and immune score and a lower immunophenoscore (IPS) score. The upregulated expression levels of immune checkpoint genes, including PD-1, PD-L1 and CTLA4, in the high CRRGRS group also further indicated that a relative immunosuppressive tumor microenvironment may exist in MIBC patients belonging to high CRRGRS group. In addition, we integrated CRRGRS and clinical characteristics with prognostic value to develop a nomogram, which could help forecast overall survival of MIBC patients. Furthermore, DIAPH3 was identified as a regulator of proliferation and cisplatin resistance in MIBC. The expression of DIAPH3 was increased in cisplatin-resistant cell lines and chemotherapy-unsensitive people. Further mechanism exploration revealed that DIAPH3 facilitated tumor proliferation and cisplatin resistance by regulating the NF-kB and epithelial-mesenchymal transition (EMT) pathways. In conclusion, the comprehensive investigations of CRRGRS increased the understanding of cisplatin resistance and provided promising insights to restrain tumor growth and overcome chemoresistance by targeting DIAPH3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。