YTHDC2 control of gametogenesis requires helicase activity but not m6A binding

YTHDC2 控制配子发生需要解旋酶活性但不需要 m6A 结合

阅读:8
作者:Yuhki Saito, Ben R Hawley #, M Rhyan Puno #, Shreya N Sarathy, Christopher D Lima, Samie R Jaffrey, Robert B Darnell, Scott Keeney, Devanshi Jain

Abstract

Mechanisms regulating meiotic progression in mammals are poorly understood. The N6-methyladenosine (m6A) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m6A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m6A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3' UTRs and coding sequences, distinct from the sites that contain m6A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m6A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。