Aim of the study
This study used clinical data mining, network analysis, and in vitro and in vivo tests to investigate the anti-arthritic and possible anti-inflammatory mechanism of HQC. Specifically, emphasis was placed on the function of the hsa_circ_0091,685/EIF4A3/IL-17 axis in the anti-inflammatory process. Materials and
Conclusion
In RA patients, HQC reduces the inflammatory response. The antiproliferative and anti-inflammatory qualities of HQC are responsible for its therapeutic impact. The suppression of the hsa_circ_0091,685/EIF4A3/IL-17 axis was linked to these favorable outcomes.
Methods
A random walk model was used to evaluate the effects of HQC on clinical immune inflammatory marker function in patients with RA. Network analysis was used to predict the potential target genes and pathways of HQC. Hematoxylin & eosin, safranin O-fast green and toluidine blue staining, immunohistochemistry, and transmission electron microscopy were performed to evaluate the anti-arthritic effects of HQC in rat models. Cell Counting Kit-8 assay, quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and RNA pull-down were used to study the anti-proliferation and anti-inflammatory mechanisms of HQC.
Results
Patients with RA who underwent HQC treatment showed a significant reduction in inflammatory response levels, according to retrospective clinical study. Network analysis revealed that HQC potentially targeted genes and pathways related to inflammation, especially IL-6, IL-17, TNF-α, IL-23, and IL-17 signaling pathway. Animal experiments showed that HQC inhibits inflammation through the IL-17 signaling pathway in rat models. Cellular experiments showed that HQC-containing serum inhibited the inflammatory response in patients with RA-FLS or RA by blocking hsa_circ_0091,685 and EIF4A3 expression.
