The Involvement of the RhoA/ROCK Signaling Pathway in Hypersensitivity Reactions Induced by Paclitaxel Injection

RhoA/ROCK信号通路在紫杉醇注射液诱发超敏反应中的作用

阅读:4
作者:Chen Pan, Yu-Shi Zhang, Jia-Yin Han, Chun-Ying Li, Yan Yi, Yong Zhao, Lian-Mei Wang, Jing-Zhuo Tian, Su-Yan Liu, Gui-Qin Li, Xiao-Long Li, Zhong Xian, Ai-Hua Liang

Abstract

A high incidence of hypersensitivity reactions (HSRs) largely limits the use of paclitaxel injection. Currently, these reactions are considered to be mediated by histamine release and complement activation. However, the evidence is insufficient and the molecular mechanism involved in paclitaxel injection-induced HSRs is still incompletely understood. In this study, a mice model mimicking vascular hyperpermeability was applied. The vascular leakage induced merely by excipients (polyoxyl 35 castor oil) was equivalent to the reactions evoked by paclitaxel injection under the same conditions. Treatment with paclitaxel injection could cause rapid histamine release. The vascular exudation was dramatically inhibited by pretreatment with a histamine antagonist. No significant change in paclitaxel injection-induced HSRs was observed in complement-deficient and complement-depleted mice. The RhoA/ROCK signaling pathway was activated by paclitaxel injection. Moreover, the ROCK inhibitor showed a protective effect on vascular leakage in the ears and on inflammation in the lungs. In conclusion, this study provided a suitable mice model for investigating the HSRs characterized by vascular hyperpermeability and confirmed the main sensitization of excipients in paclitaxel injection. Histamine release and RhoA/ROCK pathway activation, rather than complement activation, played an important role in paclitaxel injection-induced HSRs. Furthermore, the ROCK inhibitor may provide a potential preventive approach for paclitaxel injection side effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。