The CDK inhibitor purvalanol A induces neutrophil apoptosis and increases the turnover rate of Mcl-1: potential role of p38-MAPK in regulation of Mcl-1 turnover

CDK 抑制剂 purvalanol A 诱导中性粒细胞凋亡并增加 Mcl-1 的周转率:p38-MAPK 在调节 Mcl-1 周转中的潜在作用

阅读:5
作者:P Phoomvuthisarn, A Cross, L Glennon-Alty, H L Wright, S W Edwards

Abstract

Human neutrophils are terminally differentiated cells that do not replicate and yet express a number of enzymes, notably cell cycle-dependent kinases (CDKs), that are associated normally with control of DNA synthesis and cell cycle progression. In neutrophils, CDKs appear to function mainly to regulate apoptosis, although the mechanisms by which they regulate this process are largely unknown. Here we show that the CDK2 inhibitor, purvalanol A, induces a rapid decrease in myeloid cell leukaemia factor-1 (Mcl-1) levels in human neutrophils and peripheral blood mononuclear cells (PBMCs), but only induces apoptosis in neutrophils which are dependent upon expression on this protein for survival. This rapid decrease in cellular Mcl-1 protein levels was due to a purvalanol A-induced decrease in stability, with the half-life of the protein decreasing from approximately 2 h in control cells to just over 1 h after addition of the CDK2 inhibitor: it also blocked the granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent stabilization of Mcl-1. Purvanalol A blocked GM-CSF-stimulated activation of extracellular-regulated kinase (Erk) and signal transducer and activator of transcription (STAT)-3, and stimulated an additive activation of protein kinase B (Akt) with GM-CSF. Purvalanol A alone stimulated a rapid and sustained activation of p38-mitogen-activated protein kinase (MAPK) and the pan p38-MAPK inhibitor, BIRB796, partly blocked the purvalanol A-induced apoptosis and Mcl-1 loss. These novel effects of purvalanol A may result, at least in part, from blocking GM-CSF-mediated Erk activation. In addition, we propose that purvalanol A-induced activation of p38-MAPK is, at least in part, responsible for its rapid effects on Mcl-1 turnover and acceleration of neutrophil apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。