Effect of the interaction between ribosomal protein L10a and insulin receptor on carbohydrate metabolism

核糖体蛋白L10a与胰岛素受体相互作用对碳水化合物代谢的影响

阅读:7
作者:Netnapa Chaichanit, Uraipan Saetan, Monwadee Wonglapsuwan, Wilaiwan Chotigeat

Abstract

The number of patients with insulin-resistant diabetes has significantly increased. Thus, alternative insulin mimetics are required for such patients. Some evidences indicate that ribosomal protein L10a (RpL10a) is involved in the insulin pathway. In addition, we previously demonstrated that recombinant RpL10a from Fenneropenaeus merguiensis (Fm-RpL10a) could stimulate cell proliferation and trehalose metabolism in RpL10a-over-expressing flies by inducing insulin receptor (InR) expression and some insulin signaling mediators phosphorylation. In this study, we investigated the in silico binding between Fm-RpL10a and InR. The results indicated that Fm-RpL10a bound to InR at residues 635-640 and 697-702 of the FnIII2 domain. This binding was confirmed using a pull-down and immunofluorescence assay. Further analysis indicated that Fm-RpL10a could stimulate glucose utilisation by insulin-resistant cells (IRCs) and healthy cells. Additionally, Fm-RpL10a at a low concentration (1 μg/ml) altered some glucose metabolism-related genes expression in Fm-RpL10a treated IRCs. The qRT-PCR result revealed the up-regulation of Hk1, which encode key enzymes in glycolysis. Conversely, the expression of G6pc3, which participates in gluconeogenesis, was down-regulated. Overall, the results suggest that Fm-RpL10a can alleviate insulin resistance by stimulating insulin signaling via the FnIII2 domain of InR and activate glycolysis. Therefore, Fm-RpL10a may be a candidate insulin mimetic for the treatment of diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。