Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model

在tau蛋白病小鼠模型中,小胶质细胞驱动APOE依赖性神经退行性变

阅读:2
作者:Yang Shi ,Melissa Manis ,Justin Long ,Kairuo Wang ,Patrick M Sullivan ,Javier Remolina Serrano ,Rosa Hoyle ,David M Holtzman

Abstract

Chronic activation of brain innate immunity is a prominent feature of Alzheimer's disease (AD) and primary tauopathies. However, to what degree innate immunity contributes to neurodegeneration as compared with pathological protein-induced neurotoxicity, and the requirement of a particular glial cell type in neurodegeneration, are still unclear. Here we demonstrate that microglia-mediated damage, rather than pathological tau-induced direct neurotoxicity, is the leading force driving neurodegeneration in a tauopathy mouse model. Importantly, the progression of ptau pathology is also driven by microglia. In addition, we found that APOE, the strongest genetic risk factor for AD, regulates neurodegeneration predominantly by modulating microglial activation, although a minor role of apoE in regulating ptau and insoluble tau formation independent of its immunomodulatory function was also identified. Our results suggest that therapeutic strategies targeting microglia may represent an effective approach to prevent disease progression in the setting of tauopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。