4-Octyl Itaconate Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting Oxidative Stress and Inflammation

4-辛基衣康酸酯通过抑制氧化应激和炎症减轻小鼠脂多糖诱发的急性肺损伤

阅读:4
作者:Yang Li, Xing Chen, Hua Zhang, Jie Xiao, Chuanlei Yang, Weiqiang Chen, Zhanjie Wei, Xinzhong Chen, Jinping Liu

Background

Acute lung injury (ALI) is a fatal disease in the absence of pharmacological treatment. Oxidative stress and inflammation are closely related to ALI. Innate immune cells are the main source of reactive oxygen species (ROS). Macrophages play an extremely important role in ALI through the activation of inflammation and oxidative stress. Itaconate, a metabolite of tricarboxylic acid, has been reported to have strong antioxidant and anti-inflammatory effects. However, the role of itaconate in ALI is unclear. Herein, we use 4-octyl itaconate (OI), the cellular permeable derivate of itaconate, to study the effects of itaconate in vivo and in vitro.

Conclusion

OI alleviates LPS-induced ALI. Moreover, the antioxidant and anti-inflammatory effects of OI might depend on the activation of Nrf-2. Therefore, OI might have therapeutic potential for the treatment of ALI.

Methods

We used OI to pretreat C57BL/6 mice and LPS-induced ALI models to illustrate the role of itaconate in acute lung injury. The mice were randomly divided into four groups: control group, OI (100 mg/kg) group, ALI Group, ALI + OI (50 mg/kg) group, and ALI + OI (100 mg/kg) group. RAW264.7 cells were used to further prove the role and mechanism of itaconate in vitro.

Results

According to the H&E staining of the lung, OI was observed to significantly reduce lung inflammation. The active oxygen content of tissues was also significantly reduced (P<0.05). OI reduced the accumulation of neutrophils and secretion of inflammatory factors in LPS-induced ALI (P<0.05). At the cellular level, OI also reduced oxidative stress and inflammation. Intervention with OI was also observed to upregulate the expression of nuclear factor erythroid 2-related factor-2 (Nrf-2) and Nrf-2 target genes in the lung tissue and RAW264.7 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。