Novel botanical drug DA-9803 prevents deficits in Alzheimer's mouse models

新型植物药 DA-9803 可预防阿尔茨海默病小鼠模型的缺陷

阅读:9
作者:Guillaume J Pagnier, Ksenia V Kastanenka, Miwon Sohn, Sangzin Choi, Song-Hyen Choi, HyeYeon Soh, Brian J Bacskai

Background

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by deposition of amyloid plaques and disruption of neural circuitry, leading to cognitive decline. Animal models of AD deposit senile plaques and exhibit structural and functional deficits in neurons and neural networks. An effective treatment would prevent or restore these deficits, including calcium dyshomeostasis observed with in-vivo imaging.

Conclusions

In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer's disease.

Methods

We examined the effects of DA-9803, a multimodal botanical drug, in 5XFAD and APP/PS1 transgenic mice which underwent daily oral treatment with 30 or 100 mg/kg DA-9803 or vehicle alone. Behavioral testing and longitudinal imaging of amyloid deposits and intracellular calcium in neurons with multiphoton microscopy was performed.

Results

Chronic administration of DA-9803 restored behavioral deficits in 5XFAD mice and reduced amyloid-β levels. DA-9803 also prevented progressive amyloid plaque deposition in APP/PS1 mice. Elevated calcium, detected in a subset of neurons before the treatment, was restored and served as a functional indicator of treatment efficacy in addition to the behavioral readout. In contrast, mice treated with vehicle alone continued to progressively accumulate amyloid plaques and calcium overload. Conclusions: In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。