Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice

多巴胺-β-羟化酶-WGA 转基因小鼠蓝斑海马选择性摄取小麦胚芽凝集素 (WGA)

阅读:4
作者:Susan G Walling, Robert A Brown, Nobuhiko Miyasaka, Yoshihiro Yoshihara, Carolyn W Harley

Abstract

We generated transgenic mice in which a trans-synaptic tracer, wheat germ agglutinin (WGA), was specifically expressed in the locus coeruleus (LC) neurons under the control of the dopamine-β-hydroxylase (DBH) gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase (TH)-positive LC neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells, and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to LC axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by DBH-positive fibers suggest that a majority of the TH-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice implies a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by LC activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。