Cortico-striatal action control inherent of opponent cognitive-motivational styles

对手认知动机风格固有的皮质纹状体动作控制

阅读:4
作者:Cassandra Avila, Martin Sarter

Abstract

Turning on cue or stopping at a red light requires the detection of such cues to select action sequences, or suppress action, in accordance with cue-associated action rules. Cortico-striatal projections are an essential part of the brain's attention-motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic-DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In conjunction with turn cue-evoked glutamate spike levels, the presence of a single spike rendered GTs to be almost twice as likely to turn than STs. In contrast, multiple glutamate spikes predicted GTs to be less likely to turn than STs. In GTs, but not STs, inhibition of prelimbic-DMS projections attenuated turn rates, turn cue-evoked glutamate peaks, and increased the number of spikes. These findings suggest that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。