Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking

可调节局部炎症和胶原蛋白膨胀的水凝胶微球复合材料

阅读:5
作者:Elena Tous, Heather M Weber, Myung Han Lee, Kevin J Koomalsingh, Takashi Shuto, Norihiro Kondo, Joseph H Gorman 3rd, Daeyeon Lee, Robert C Gorman, Jason A Burdick

Abstract

Injectable biomaterials alone may alter local tissue responses, including inflammatory cascades and matrix production (e.g. stimulatory dermal fillers are used as volumizing agents that induce collagen production). To expand upon the available material compositions and timing of presentation, a tunable hyaluronic acid (HA) and poly(lactide-co-glycolide) (PLGA) microsphere composite system was formulated and assessed in subcutaneous and cardiac tissues. HA functionalized with hydroxyethyl methacrylate (HeMA) was used as a precursor to injectable and degradable hydrogels that carry PLGA microspheres (~50 μm diameter) to tissues, where the HA hydrogel degradation (~20 or 70 days) and quantity of PLGA microspheres (0-300 mgml(-1)) are readily varied. When implanted subcutaneously, faster hydrogel degradation and more microspheres (e.g. 75 mgml(-1)) generally induced more rapid tissue and cellular interactions and a greater macrophage response. In cardiac applications, tissue bulking may be useful to alter stress profiles and to stabilize the tissue after infarction, limiting left ventricular (LV) remodeling. When fast degrading HeMA-HA hydrogels containing 75 mgml(-1) microspheres were injected into infarcted tissue in sheep, LV dilation was limited and the thickness of the myocardial wall and the presence of vessels in the apical infarct region were increased ~35 and ~60%, respectively, compared to empty hydrogels. Both groups decreased volume changes and infarct areas at 8 weeks, compared to untreated controls. This work illustrates the importance of material design in expanding the application of tissue bulking composites to a range of biomedical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。