Regenerating islet-derived protein 3 gamma (Reg3g) ameliorates tacrolimus-induced pancreatic β-cell dysfunction in mice by restoring mitochondrial function

再生胰岛衍生蛋白 3γ (Reg3g) 通过恢复线粒体功能改善小鼠由他克莫司引起的胰腺 β 细胞功能障碍

阅读:5
作者:Senlin Li, Hong Zhou, Mengyuan Xie, Zijun Zhang, Jing Gou, Jian Yang, Cheng Tian, Kun Ma, Cong-Yi Wang, Yi Lu, Qing Li, Wen Peng, Ming Xiang

Background and purpose

Tacrolimus a first-line medication used after transplantation can induce β-cell dysfunction, causing new-onset diabetes mellitus (NODM). Regenerating islet-derived protein 3 gamma (Reg3g), a member of the pancreatic regenerative gene family, has been reported to improve type 1 diabetes by promoting β-cell regeneration. We aim to investigate the role of Reg3g in reversing tacrolimus-induced β-cell dysfunction and NODM in mice. Experimental approach: Circulating REG3A (the human homologue of mouse Reg3g) in heart transplantation patients treated with tacrolimus was detected. The glucose-stimulated insulin secretion and mitochondrial functions, including mitochondria membrane potential (MMP), mitochondria calcium, ATP production, oxygen consumption rate and mitochondrial morphology were investigated in β-cells. Additionally, effects of Reg3g on tacrolimus-induced NODM in mice were analysed. Key

Purpose

Tacrolimus a first-line medication used after transplantation can induce β-cell dysfunction, causing new-onset diabetes mellitus (NODM). Regenerating islet-derived protein 3 gamma (Reg3g), a member of the pancreatic regenerative gene family, has been reported to improve type 1 diabetes by promoting β-cell regeneration. We aim to investigate the role of Reg3g in reversing tacrolimus-induced β-cell dysfunction and NODM in mice. Experimental approach: Circulating REG3A (the human homologue of mouse Reg3g) in heart transplantation patients treated with tacrolimus was detected. The glucose-stimulated insulin secretion and mitochondrial functions, including mitochondria membrane potential (MMP), mitochondria calcium, ATP production, oxygen consumption rate and mitochondrial morphology were investigated in β-cells. Additionally, effects of Reg3g on tacrolimus-induced NODM in mice were analysed. Key

Results

Circulating REG3A level in heart transplantation patients with NODM significantly decreased compared with those without diabetes. Tacrolimus down-regulated Reg3g via inhibiting STAT3-mediated transcription activation. Moreover, Reg3g restored glucose-stimulated insulin secretion suppressed by tacrolimus in β-cells by improving mitochondrial functions, including increased MMP, mitochondria calcium uptake, ATP production, oxygen consumption rate and contributing to an intact mitochondrial morphology. Mechanistically, Reg3g increased accumulation of pSTAT3(Ser727) in mitochondria by activating ERK1/2-STAT3 signalling pathway, leading to restoration of tacrolimus-induced mitochondrial impairment. Reg3g overexpression also effectively mitigated tacrolimus-induced NODM in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。