1,5-Anhydroglucitol promotes pre-B acute lymphocytic leukemia progression by driving glycolysis and reactive oxygen species formation

1,5-脱水葡萄糖醇通过促进糖酵解和活性氧形成促进前 B 型急性淋巴细胞白血病进展

阅读:4
作者:Huasu Zhu, Huixian Ma, Na Dong, Min Wu, Dong Li, Linghong Liu, Qing Shi, Xiuli Ju

Background

Precursor B-cell acute lymphoblastic leukemia (pre-B ALL) is the most common hematological malignancy in children. Cellular metabolic reorganization is closely related to the progression and treatment of leukemia. We found that the level of 1,5-anhydroglucitol (1,5-AG), which is structurally similar to glucose, was elevated in children with pre-B ALL. However, the effect of 1,5-AG on pre-B ALL was unclear. Here, we aimed to reveal the roles and mechanisms of 1,5-AG in pre-B ALL progression.

Conclusions

Our study reveals a previously undiscovered role of 1,5-AG in pre-B ALL, which contributes to an in-depth understanding of anaerobic glycolysis in the progression of pre-B ALL and provides new targets for the clinical treatment of pre-B ALL.

Methods

The peripheral blood plasma level of children with initial diagnosis of pre-B ALL and that of healthy children was measured using untargeted metabolomic analysis. Cell Counting Kit-8 assay, RNA sequencing, siRNA transfection, real-time quantitative PCR, and western blot were performed using pre-B ALL cell lines Reh and HAL-01. Cell cycle, cell apoptosis, ROS levels, and the positivity rate of CD19 were assessed using flow cytometry. Oxygen consumption rates and extracellular acidification rate were measured using XFe24 Extracellular Flux Analyzer. The lactate and nicotinamide adenine dinucleotide phosphate levels were measured using kits. The effect of 1,5-AG on pre-B ALL progression was verified using the In Vivo Imaging System in a xenotransplantation leukemia model.

Results

We confirmed that 1,5-AG promoted the proliferation, viability, and intracellular glycolysis of pre-B ALL cells. Mechanistically, 1,5-AG promotes glycolysis while inhibiting mitochondrial respiration by upregulating pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, high levels of intracellular glycolysis promote pre-B ALL progression by activating the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Conversely, N-acetylcysteine or vitamin C, an antioxidant, effectively inhibited 1,5-AG-mediated progression of leukemia cells. Conclusions: Our study reveals a previously undiscovered role of 1,5-AG in pre-B ALL, which contributes to an in-depth understanding of anaerobic glycolysis in the progression of pre-B ALL and provides new targets for the clinical treatment of pre-B ALL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。