MEG3 sponges miRNA-376a and YBX1 to regulate angiogenesis in ovarian cancer endothelial cells

MEG3 吸附 miRNA-376a 和 YBX1 来调节卵巢癌内皮细胞的血管生成

阅读:4
作者:Yize Li, Lingling Zhang, Yongmei Zhao, Hongyan Peng, Nan Zhang, Wendong Bai

Conclusion

This study uncovered a novel mechanism that MEG3 sponged miRNA-376a and YBX1 to regulate the expression of RASA1 and exert an effect on the angiogenesis of ovarian cancer.

Methods

The transcript levels of MEG3 in ovarian cancer samples from the GEPIA database were analyzed and compared to those in normal samples. The effect of MEG3 on the tube formation ability was quantified in ovarian carcinoma-derived microvascular endothelial cells (ODMECs). Through sequence analysis, we identified miR-376a as a major candidate to bind to MEG3. A MEG3-miR-376a binding site was identified via genetic modulation methods. RAS p21 protein activator 1 (RASA1) was screened as a middle player to bridge the role of miR-376a and angiogenesis. The regulation between miR-376a and RASA1 was confirmed via a dual-luciferase reporter assay. Finally, the competition was explored between Y-box binding protein 1 (YBX1) and miR-376a in binding to MEG3.

Results

MEG3 was significantly downregulated in ODMECs compared with normal ovarian endothelial cells. Overexpression of MEG3 led to reduced tube formation of ODMECs. The MS2 hairpin assay showed that MEG3 acted as a platform to sponge miR-376a. RASA1, a key suppressor of tube formation, was directly targeted by miR-376a. Further, MEG3 suppressed angiogenesis through the miR-376a/RASA1 axis in ODMECs. Finally, YBX1 and miR-376a were competitively bound to MEG3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。