Foundations of modeling in cryobiology-III: Inward solidification of a ternary solution towards a permeable spherical cell in the dilute limit

低温生物学建模基础-III:三元溶液在稀释极限下向内凝固成可渗透的球形细胞

阅读:6
作者:Daniel M Anderson, James D Benson, Anthony J Kearsley

Abstract

In the previous two manuscripts we outlined the general theory of heat and mass transport in a cell-liquid-ice system with general boundaries and nonideal and nondilute assumptions. Here we simplify the models considerably by presenting a reduction to a spherically symmetric system-a spherical cell with an encroaching spherical ice front. We also reduce to linear approximations of the nonideal nondilute models, essentially assuming dilute and ideal conditions. We derive the resulting nondimensional combined heat and mass transport model for a ternary solution and present numerical solutions. We include an analysis of the effects of varying some nondimensional parameters on rates of ice growth with comments on the necessity of models that account for spatially varying quantities in cryobiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。