Downregulated Calcium-Binding Protein S100A16 and HSP27 in Placenta-Derived Multipotent Cells Induce Functional Astrocyte Differentiation

胎盘来源的多能细胞中钙结合蛋白 S100A16 和 HSP27 下调诱导功能性星形胶质细胞分化

阅读:5
作者:Yu-Che Cheng, Chi-Jung Huang #, Wei-Chi Ku #, Shu-Lin Guo #, Lu-Tai Tien, Yih-Jing Lee, Chih-Cheng Chien

Abstract

Little is known about genes that induce stem cells differentiation into astrocytes. We previously described that heat shock protein 27 (HSP27) downregulation is directly related to neural differentiation under chemical induction in placenta-derived multipotent stem cells (PDMCs). Using this neural differentiation cell model, we cross-compared transcriptomic and proteomic data and selected 26 candidate genes with the same expression trends in both omics analyses. Those genes were further compared with a transcriptomic database derived from Alzheimer's disease (AD). Eighteen out of 26 candidates showed opposite expression trends between our data and the AD database. The mRNA and protein expression levels of those candidates showed downregulation of HSP27, S100 calcium-binding protein A16 (S100A16) and two other genes in our neural differentiation cell model. Silencing these four genes with various combinations showed that co-silencing HSP27 and S100A16 has stronger effects than other combinations for astrocyte differentiation. The induced astrocyte showed typical astrocytic star-shape and developed with ramified, stringy and filamentous processes as well as differentiated endfoot structures. Also, some of them connected with each other and formed continuous network. Immunofluorescence quantification of various neural markers indicated that HSP27 and S100A16 downregulation mainly drive PDMCs differentiation into astrocytes. Immunofluorescence and confocal microscopic images showed the classical star-like shape morphology and co-expression of crucial astrocyte markers in induced astrocytes, while electrophysiology and Ca2+ influx examination further confirmed their functional characteristics. In conclusion, co-silencing of S100A16 and HSP27 without chemical induction leads to PDMCs differentiation into functional astrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。