Characterization of aspartokinase double mutants using a combination of experiments and simulations

使用实验和模拟相结合的方法表征天冬氨酸激酶双突变体

阅读:9
作者:Zhijie Chen, Yu Fu, Shimeng Liu, Xinyu Huang, Xiaoting Kong, Zhaojie Mao, Ning Hu, Fengxiang Zhang, Caijing Han

Abstract

Aspartokinase (AK) is synergistically suppressed by Thr and Lys in the Corynebacterium metabolic pathway. Site-directed mutations can significantly improve AK inhibition. Our previous studies confirmed that sites 379 and 380 were important sites affecting enzyme activity, so we further screen the double mutants with excellent enzymatic properties from sites 379 and 380, and discuss the difference of enzyme activity between the double mutants and single mutants. Here, a double mutant, T379L/A380 M, with improved enzyme activity (2.74-fold) was obtained. Enzymatic property experiments showed that the optimum temperature of T379L/A380 M increased from 26 °C (recombinant Escherichia coli; WT-AK) to 45 °C and that the optimal pH decreased from 8.0 (WT-AK) to 7.5. Further, the half-life decreased from 4.5 to 3.32 h. These enzymatic properties were better than other mutant strains. Inhibition was diminished with low concentrations of Lys, and Lys + Thr presented an activating role. Subsequently, the reasons for the improved AK enzyme activity were illustrated with microscale thermophoresis (MST) experiments and molecular dynamic (MD) simulation by measuring ligand affinity and AK conformational changes. MST showed that the affinity between T379L/A380 M and Lys decreased, but the affinity between T379L/A380 M and Asp increased, promoting T379L/A380 M enzyme activity. MD experiments showed that T379L/A380 M enhanced the Asp-ATP affinity and catalyzed the transfer of residues S192 and D193 to Asp, promoting T379L/A380 M enzyme activity. However, the mutation did not cause fluctuations in the substrate Asp and ATP pockets. This might be why the enzyme activity was inferior to that of the single mutants (T379L and A380 M).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。