Docosahexaenoic acid improves cognition and hippocampal pyroptosis in rats with intrauterine growth restriction

二十二碳六烯酸可改善宫内生长受限大鼠的认知能力和海马焦亡

阅读:13
作者:Lijia Wan, Xiaori He, Mingfeng He, Yuanqiang Yu, Weiming Jiang, Can Liang, Kaiju Luo, Xiaoyun Gong, Yonghui Yang, Qingyi Dong, Pingyang Chen

Conclusion

Cognitive impairment in rats with IUGR may be related to pyroptosis of hippocampal neurons. Early intervention with DHA may attenuate cognitive impairment and reduce hippocampal pyroptosis in rats with IUGR.

Methods

Learning and memory function was assessed using the Morris water maze test. The morphological structure and ultrastructure of the hippocampus was examined via hematoxylin and eosin staining and electron microscopy respectively. The pyroptosis of hippocampal neuron was detected by gasdermin-D (GSDMD) immunofluorescence staining, mRNA and protein expression of nuclear localization leucine-rich-repeat protein 1 (NLRP1), caspase-1, GSDMD, and quantification of inflammatory cytokines interleukin (IL)-1β and IL-18 in the hippocampus.

Objective

Intrauterine growth restriction (IUGR) is defined as the failure of a fetus to reach its genetic growth potential in utero resulted by maternal, placental, fetal, and genetic factors. Previous studies have reported that IUGR is associated with a high incidence of neurological damage, although the precise causes of such damage remain unclear. We aimed to investigate whether cognitive impairment in rats with IUGR is related to pyroptosis of hippocampal neurons and determine the effect of early intervention with docosahexaenoic acid (DHA).

Results

IUGR rats exhibited decreased learning and memory function, morphological structure and ultrastructural changes in hippocampus compared to controls. IUGR rats also exhibited increased hippocampal quantification of GSDMD immunofluorescence staining, increased mRNA and protein expression of NLRP1, caspase-1, and GSDMD, and increased quantification of IL-1β and IL-18 in the hippocampus. Intervention with DHA attenuated these effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。