Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity

生酮饮食可降低氧化应激并改善线粒体呼吸复合体活性

阅读:10
作者:Tiffany Greco, Thomas C Glenn, David A Hovda, Mayumi L Prins

Abstract

Cerebral metabolism of ketones after traumatic brain injury (TBI) improves neuropathology and behavior in an age-dependent manner. Neuroprotection is attributed to improved cellular energetics, although other properties contribute to the beneficial effects. Oxidative stress is responsible for mitochondrial dysfunction after TBI. Ketones decrease oxidative stress, increase antioxidants and scavenge free radicals. It is hypothesized that ketogenic diet (KD) will decrease post-TBI oxidative stress and improve mitochondria. Postnatal day 35 (PND35) male rats were given sham or controlled cortical impact (CCI) injury and placed on standard (STD) or KD. Ipsilateral cortex homogenates and mitochondria were assayed for markers of oxidative stress, antioxidant expression and mitochondrial function. Oxidative stress was significantly increased at 6 and 24 h post-injury and attenuated by KD while inducing protein expression of antioxidants, NAD(P)H dehydrogenase quinone 1 (NQO1) and superoxide dismutase (SOD1/2). Complex I activity was inhibited in STD and KD groups at 6 h and normalized by 24 h. KD significantly improved Complex II-III activity that was reduced in STD at 6 h. Activity remained reduced at 24 h in STD and unchanged in KD animals. These results strongly suggest that ketones improve post-TBI cerebral metabolism by providing alternative substrates and through antioxidant properties, preventing oxidative stress-mediated mitochondrial dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。