Pyrolysis Study of Mixed Polymers for Non-Isothermal TGA: Artificial Neural Networks Application

非等温 TGA 混合聚合物热解研究:人工神经网络应用

阅读:5
作者:Ibrahim Dubdub

Abstract

Pure polymers of polystyrene (PS), low-density polyethylene (LDPE) and polypropylene (PP), are the main representative of plastic wastes. Thermal cracking of mixed polymers, consisting of PS, LDPE, and PP, was implemented by thermal analysis technique “thermogravimetric analyzer (TGA)” with heating rate range (5−40 K/min), with two groups of sets: (ratio 1:1) mixture of PS and PP, and (ratio 1:1:1) mixture of PS, LDPE, and PP. TGA data were utilized to implement one of the machine learning methods, “artificial neural network (ANN)”. A feed-forward ANN with Levenberg-Marquardt (LM) as learning algorithm in the backpropagation model was performed in both sets in order to predict the weight fraction of the mixed polymers. Temperature and the heating rate are the two input variables applied in the current ANN model. For both sets, 10-10 neurons in logsig-tansig transfer functions two hidden layers was concluded as the best architecture, with almost (R > 0.99999). Results approved a good coincidence between the actual with the predicted values. The model foresees very efficiently when it is simulated with new data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。