Gene expression profile of coronary artery cells treated with nonsteroidal anti-inflammatory drugs reveals off-target effects

非甾体抗炎药治疗冠状动脉细胞的基因表达谱揭示了脱靶效应

阅读:7
作者:Sanjeewani T Palayoor, Molykutty J-Aryankalayil, Adeola Y Makinde, David Cerna, Michael T Falduto, Scott R Magnuson, C Norman Coleman

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) have come under scrutiny because of the gastrointestinal, renal, and cardiovascular toxicity associated with prolonged use of these drugs. The purpose of this study was to identify molecular targets for NSAIDs related to cellular toxicity with a view to optimize drug efficacy in the clinic. Coronary artery smooth muscle cells and endothelial cells were treated with low (clinically achievable) and high (typically used in preclinical studies) concentrations of celecoxib, NS398, and ibuprofen for 24 hours. NSAIDs-induced gene expression changes were evaluated by microarray analysis and validated by real-time reverse-transcription polymerase chain reaction and western blotting. The functional significance of differentially expressed genes was evaluated by Ingenuity Pathway Analysis. At high concentrations, NSAIDs altered the expression of genes regulating cell proliferation and cell death. NSAIDs also altered genes associated with cardiovascular functions including inflammation, thrombosis, fibrinolysis, coronary artery disease, and hypertension. The gene expression was most impacted by ibuprofen, celecoxib, and NS398, in that order. This study revealed that NSAIDs altered expression of an array of genes associated with cardiovascular events and emphasizes the potential for fingerprinting drugs in preclinical studies to assess the potential drug toxicity and to optimize the drug efficacy in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。