Molecular architecture of primate specific neural circuit formation

灵长类特定神经回路形成的分子结构

阅读:5
作者:Tomomi Shimogori, Kohei Onishi, Takafumi Hoshino, Moe Nakanishi

Abstract

The mammalian cortex is a highly evolved brain region, but we still lack a comprehensive understanding of the molecular mechanisms underlying primate-specific neural circuits formation. In this study, we employed spatial transcriptomics to assess gene expression dynamics in the marmoset cortex during development, focusing on key regions and time points. Spatial transcriptomics identified genes that are sexually, spatially, and temporally differentially expressed in the developing marmoset cortex. Our detailed analysis of the visual cortex unveiled dynamic changes in gene expression across layers with distinct projections and functions. Notably, we discovered numerous axon guidance molecules with spatiotemporal expression patterns unique to the developing marmoset prefrontal cortex (PFC), which control PFC neuronal circuits. Among these molecules, PRSS12 (Protease, Serine, 12 (neurotrypsin, motopsin), when ectopically expressed in the mouse prelimbic cortex, caused similar changes in connectivity as observed in the marmoset A32 area. Furthermore, PRSS12 showed similar expression patterns in both marmoset and human PFC during development, suggesting parallels between marmoset and human brain development. The differential expression of axon guidance molecules in the developing PFC, varying by region, likely contributes to the formation of unique circuits observed in primates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。