Dihydromyricetin ameliorates oxygen‑glucose deprivation and re‑oxygenation‑induced injury in HT22 cells by activating the Wnt/β‑catenin signaling pathway

二氢杨梅素通过激活 Wnt/β-catenin 信号通路改善 HT22 细胞中氧葡萄糖缺乏和再氧合引起的损伤

阅读:5
作者:Xiaoxiao Tao, Yaping Jiang, Xian Zheng, Xiaoxiao Ji, Feifei Peng

Abstract

Dihydromyricetin (DMY) is a natural flavonoid that possesses a wide range of pharmacological properties. The aim of the present study was to determine whether DMY could protect against nerve cell injury following ischemic stroke through antioxidant and neuroprotective effects. The effects of DMY on the viability, oxidative stress and apoptosis of HT22 cells following oxygen‑glucose deprivation and re‑oxygenation (OGD/R) were examined using MTT, lactate dehydrogenase (LDH), superoxide (SOD), malondialdehyde (MDA), western blot and TUNEL assays. Furthermore, Wnt/β‑catenin signaling proteins in OGD/R‑stimulated HT22 cells were detected in the presence or absence of DMY. In a separate experiment, the effect of DMY on OGD/R‑induced HT22 cell injury was also observed in the presence of the Wnt/β‑catenin inhibitor, XAV939. The results demonstrated that DMY had no impact on the survival of untreated HT22 cells, although DMY treatment significantly increased cell viability and inhibited cytotoxicity, oxidative stress and apoptosis following OGD/R. In addition, DMY upregulated the expression of Wnt/β‑catenin in OGD/R‑stimulated HT22 cells. In conclusion, DMY protected HT22 cells from OGD/R‑induced oxidative stress and apoptosis, and its effects may be mediated by the activation of the Wnt/β‑catenin signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。