Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex

清醒状态下的去甲肾上腺素能信号传导抑制小鼠视觉皮层的小胶质细胞监视和突触可塑性。

阅读:3
作者:Rianne D Stowell # ,Grayson O Sipe # ,Ryan P Dawes ,Hanna N Batchelor ,Katheryn A Lordy ,Brendan S Whitelaw ,Mark B Stoessel ,Jean M Bidlack ,Edward Brown ,Mriganka Sur ,Ania K Majewska

Abstract

Microglia are the brain's resident innate immune cells and also have a role in synaptic plasticity. Microglial processes continuously survey the brain parenchyma, interact with synaptic elements and maintain tissue homeostasis. However, the mechanisms that control surveillance and its role in synaptic plasticity are poorly understood. Microglial dynamics in vivo have been primarily studied in anesthetized animals. Here we report that microglial surveillance and injury response are reduced in awake mice as compared to anesthetized mice, suggesting that arousal state modulates microglial function. Pharmacologic stimulation of β2-adrenergic receptors recapitulated these observations and disrupted experience-dependent plasticity, and these effects required the presence of β2-adrenergic receptors in microglia. These results indicate that microglial roles in surveillance and synaptic plasticity in the mouse brain are modulated by noradrenergic tone fluctuations between arousal states and emphasize the need to understand the effect of disruptions of adrenergic signaling in neurodevelopment and neuropathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。