Exosomes as a messager to regulate the crosstalk between macrophages and cardiomyocytes under hypoxia conditions

外泌体作为信使在缺氧条件下调节巨噬细胞和心肌细胞之间的串扰

阅读:8
作者:Zenglei Zhang, Yanyan Xu, Chang Cao, Bo Wang, Jiacheng Guo, Zhen Qin, Yongzheng Lu, Jianchao Zhang, Li Zhang, Wei Wang, Jinying Zhang, Junnan Tang

Abstract

Recent studies have confirmed that cardiomyocyte-derived exosomes have many pivotal biological functions, like influencing the progress of coronary artery disease via modulating macrophage phenotypes. However, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages have not been fully characterized. Hence, this study aimed to observe the interaction between cardiomyocytes under hypoxia and macrophages through exosome communication and further evaluate the ability of exosomes derived from cardiomyocytes cultured under hypoxic conditions (Hypo-Exo) to polarize macrophages, and the effect of alternatively activated macrophages (M2) on hypoxic cardiomyocytes. Our results revealed that hypoxia facilitated the production of transforming growth factor-beta (TGF-β) in H9c2 cell-derived exosomes. Moreover, exosomes derived from cardiomyocytes cultured under normal conditions (Nor-Exo) and Hypo-Exo could induce RAW264.7 cells into classically activated macrophages (M1) and M2 macrophages respectively. Likewise, macrophage activation was induced by circulating exosomes isolated from normal human controls (hNor-Exo) or patients with acute myocardial infarction (hAMI-Exo). Thus, our findings support that the profiles of hAMI-Exo have been changed, which could regulate the polarization of macrophages and subsequently the polarized M2 macrophages reduced the apoptosis of cardiomyocytes in return. Based on our findings, we speculate that exosomes have emerged as important inflammatory response modulators regulating cardiac oxidative stress injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。