Phenotypic Characterization of Transgenic Mice Expressing Human IGFBP-5

表达人类 IGFBP-5 的转基因小鼠的表型特征

阅读:4
作者:Xinh-Xinh Nguyen, Matthew Sanderson, Kristi Helke, Carol Feghali-Bostwick

Abstract

Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding protein-5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF lung tissues. In this study, we investigated the functional role of IGFBP-5 in the development of fibrosis in vivo using a transgenic model. We generated transgenic mice ubiquitously expressing human IGFBP-5 using CRISPR/Cas9 knock-in. Our data show that the heterozygous and homozygous mice are viable and express human IGFBP-5 (hIGFBP-5). Transgenic mice had increased expression of extracellular matrix (ECM) genes, especially Col3a1, Fn, and Lox in lung and skin tissues of mice expressing higher transgene levels. Histologic analysis of the skin tissues showed increased dermal thickness, and the lung histology showed subtle changes in the heterozygous and homozygous mice as compared with the wild-type mice. These changes were more pronounced in animals expressing higher levels of hIGFBP-5. Bleomycin increased ECM gene expression in wild-type mice and accentuated an increase in ECM gene expression in transgenic mice, suggesting that transgene expression exacerbated bleomycin-induced pulmonary fibrosis. Primary lung fibroblasts cultured from lung tissues of homozygous transgenic mice showed significant increases in ECM gene expression and protein levels, further supporting the observation that IGFBP-5 resulted in a fibrotic phenotype in fibroblasts. In summary, transgenic mice expressing human IGFBP-5 could serve as a useful animal model for examining the function of IGFBP-5 in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。