Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals

控制果蝇和哺乳动物神经元兴奋性的剪接程序的平行进化

阅读:5
作者:Antonio Torres-Méndez, Sinziana Pop, Sophie Bonnal, Isabel Almudi, Alida Avola, Ruairí J V Roberts, Chiara Paolantoni, Ana Alcaina-Caro, Ane Martín-Anduaga, Irmgard U Haussmann, Violeta Morin, Fernando Casares, Matthias Soller, Sebastian Kadener, Jean-Yves Roignant, Lucia Prieto-Godino, Manuel Irimi

Abstract

Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the enhancer of microexons (eMIC) domain in Srrm234. In Drosophila, this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。