Mullerian inhibiting substance induces apoptosis of human endometrial stromal cells in endometriosis

穆勒氏管抑制物质诱导子宫内膜异位症中人子宫内膜基质细胞凋亡

阅读:7
作者:Jeong Namkung, Jae Yen Song, Hyun Hee Jo, Mee Ran Kim, Young Oak Lew, Patricia K Donahoe, David T MacLaughlin, Jang Heub Kim

Conclusions

The results support a central role for MIS in endometriosis. Although the precise mechanism of MIS-mediated inhibition of ESC growth has not been fully defined, these data suggest that MIS has activity against ESC in vitro and may also be an effective targeted therapy for endometriosis.

Objective

Our objective was to investigate the expression of MIS type II receptor (MISR II) and whether MIS can inhibit the proliferation and induce apoptosis in primary cultures of endometrial stromal cells (ESC) of endometriosis. Design and settings: In vitro experiments were performed in the university research laboratory. Participants: Tissue samples from 12 patients who had undergone evisceration for ovarian endometrial cysts were included in this study. Interventions and main outcome measures: The expression of MISR II in ESC was investigated by immunohistochemistry. The cell viability and apoptosis in ESC treated with MIS was measured by methylthiazoletetrazolium assay and annexin V analysis. The expression of regulatory proteins in ESC treated with MIS was shown by Western blotting.

Results

ESC showed specific immunostaining for the MISR II. ESC treated with MIS exhibited 32% growth inhibition (P = 0.0001). The changes in cell cycle distribution after MIS exposure at 72 h demonstrated that S and G(2)M phases were decreased; G(0)G(1) and sub-G(0)G(1) phases were increased. ESC treated with MIS showed 13.72% annexin V-fluorescein isothiocyanate positivity. In the ESCs, which contain defective p16, MIS increased the expression of pocket proteins p107 and p130 and decreased E2F transcription factor 1. Conclusions: The results support a central role for MIS in endometriosis. Although the precise mechanism of MIS-mediated inhibition of ESC growth has not been fully defined, these data suggest that MIS has activity against ESC in vitro and may also be an effective targeted therapy for endometriosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。